skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bishop, Taylor V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Modeling has led to proposals that the amount of neural tissue folding is set by the level of differential expansion between tissue layers and that the wavelength is set by the thickness of the outer layer. Here, we used inbred mouse strains with distinct amounts of cerebellar folding to investigate these predictions. We identified a distinct critical period during which the folding amount diverges between the two strains. In this period, regional changes in the level of differential expansion between the external granule layer (EGL) and underlying core correlate with the folding amount in each strain. Additionally, the thickness of the EGL varies regionally during the critical period alongside corresponding changes in wavelength. The number of SHH-expressing Purkinje cells predicts the folding amount, but the proliferation rate in the EGL is the same between the strains. However, regional changes in the cell division angle within the EGL predicts both the tangential expansion and the thickness of the EGL. Cell division angle is likely a tunable mechanism whereby both the level of differential expansion along the perimeter and the thickness of the EGL are regionally tuned to set the amount and wavelength of folding. 
    more » « less